主条目:元素周期律
核外电子排布
编辑
主条目:电子排布
核外电子层与亚层随原子序数增加而排布的大致次序。该次序依照能量递增的顺序,利用马德隆规则确定。
周期表中的性质变化趋势(沿箭头指示方向递增)
电中性原子的核外电子排布情况随原子序数的增长展现出一种不断复现的规律(即所谓“周期”)。核外电子可以占据不同的电子层(以数字标识),每个层又包含一系列亚层(以字母s、p、d、f、g等标识)。随原子序数递增,电子依照構造原理(即马德隆规则,或称能量递增原理)逐步填入各电子层与亚层中,顺序如左图所示。以氖元素为例,其核外电子构型为1s2 2s2 2p6。其10个核外电子中,两个最先填入第1层,而剩余八个填入第二层。这其中,2个填入2s亚层,6个则填入2p亚层。在周期表中,一旦电子填入了一个此前从未填充过的新电子层,该元素就将作为一个新周期的起始元素而出现。目前这些起始元素包括氢和所有碱金属。[33][34]
由于元素性质基本由核外电子的排布情况决定,因而元素的性质也随原子序数增长而体现出某种周期性。典型的例子是原子半径、电离能和电子亲和能。实际上,元素周期律的提出和周期表的发明,就是基于对这些周期性规律的观察和整理,因为彼时尚未出现与此相关的理论解释。[33][34]
原子半径
编辑
主条目:原子半径
原子半径对原子序数作图。[e]
不同元素的原子半径可以利用周期表加以预测和解释。通常而言,沿周期方向,自左向右,原子半径依次递减,而沿着族的方向,自上而下,原子半径逐渐增大。从上一个周期的稀有气体到下一周期的碱金属,原子半径会突然增大。这些变化与其它的理化性质变化趋势一样,都可以用电子壳层填充理论解释。它们也为量子力学理论提供了重要的支持。[35]
在镧系元素中,4f亚层的价电子自左向右逐步增加,但它们对于同步增加的核电荷的屏蔽效果不良。因此,原子核对于镧系元素外层电子的吸引力较强,导致镧系元素的原子半径偏小,即所谓的镧系收缩。受此影响,镧系后面的元素也有较小的原子半径。[36]因此,铪的原子半径基本和锆相同,钽与铌的半径也相近,其后的元素依此类推。镧系收缩的影响一直波及到铂元素,此后才被惰性电子对效应(一种相对论效应)所掩盖。[37]另外,和镧系收缩类似,d区元素也存在着收缩效应,只不过强度更弱,它是d亚层电子对外侧的p电子屏蔽不完全导致的。[36]
电离能
编辑
图示为电离能的变化趋势:每个周期自左向右,电离能逐渐增大。碱金属最小,稀有气体最大。
主条目:电离能
“第一电离能”是指从原子中移走一个电子所需要的能量,“第二电离能”是在此基础上移走第二个电子所需的能量,依此类推。对于同一个原子,各级电离能随着离子化程度的增加而增大,例如镁的第一电离能是738 kJ/mol,第二电离能为1450 kJ/mol。粗略地讲,这是因为越靠内的电子受到的静电吸引作用越强,移走它所需要的能量因此也越大。一般地,越靠近周期表右端,电离能也相应地越大。[37]
当一个离子已经达到稀有气体电子排布时,移走下一个电子的电离能将突然上升。仍以镁元素为例,移走两个3s电子后,镁离子已经具有氖的电子排布,在此基础上移走下一个2p电子相当困难,因而第三电离能将明显高于前两级电离能,高达7730 kJ/mol。第三周期的其它元素中也可见这种现象。[37]
电负性
编辑
主条目:电负性
图示同族元素电负性随原子序数增大而减小的趋势。每条折线对应一个特定的族。
一个原子吸引共用电子对的能力称作电负性。[38]原子的电负性与该原子的原子序数有关,同时也受價電子与核距离的影响。电负性越大,原子吸引电子(对)的能力越强。这个指标是萊納斯·鮑林于1932年提出的。[39]一般来说,在元素周期表中,自左向右,电负性依次递增;自上而下,电负性依次递减。因而,在电负性已知的元素中,靠近右上角的氟元素电负性最高,左下角的铯元素电负性最低[22][f]。
需要注意的是,上述规则有几个例外。受d区收缩的影响(参见“原子半径”一节),镓和锗的电负性分别高于它们上方的铝和硅。第四周期过渡金属的前几个元素电负性上升得比较快,这是由3d电子对核电荷的屏蔽不完全,导致这几个元素的原子半径较小而引发的。[22]
元素的电负性会因为失去电子而增加。[40]这有时会造成很大的差别,例如+2氧化态的铅的电负性为1.87,而+4氧化态的铅则达到了2.33。[41]
电子亲和能
编辑
主条目:电子亲合能
电子亲和能随原子序数的变化趋势。[42]一般而言,同一周期中,直到卤族元素以前,电子亲和能都呈增加趋势,到稀有气体时又急速下降。第1族(I A族)、第11族元素(I B族)处的局部极大值是由于s亚层将要填满而产生的(金元素的6s亚层尤甚:完全填满的4f亚层对其有进一步的稳定作用)。 碱土金属、氮、磷、锰、铼等处的极小值则受相反的原因影响:这些元素的s亚层(或p亚层/d亚层)已经处于全充满或半满状态,因此对新电子的吸引能力减弱。[43]
原子的电子亲和能是指向电中性的原子上加入一个电子,使之形成阴离子时释放的能量。不同元素电子亲和能的变化范围较大,不过其中仍有迹可循。一般而言,非金属的电子亲和能高于金属元素,其中氯元素的电子亲和能最大。关于稀有气体的电子亲和能尚无定论,因此其电子亲和能可能是负的(尽管绝对值很小),也可能不是。[44]
大体上讲,沿同一周期自左向右,电子亲和能逐渐上升。由于越靠右端,原子的电子壳层填充得越满,因而向其中加入一个电子后,阴离子的结构越接近稳定的闭壳层,电子亲和能也相应地越高。[44]
沿同一族自上而下,电子亲和能大体是逐渐下降的,因为新加入的电子离原子核越来越远,受到的吸引越来越弱,因而释放的能量也越来越少。不过实际上完全符合这个规律的只有第1族(I A族)——整个周期表约三分之一的元素不符合这个规律,即其电子亲和能高于上方紧邻的元素,这些例外多数情况下和d及f亚层的屏蔽效果不完全有关。[45]
金属性
编辑
电离能,电负性和电子亲和力值越低,元素的金属性越强,非金属性越弱。[46]鉴于这三种性质的周期性,金属性往往会在一周期(行)中由左至右递减(很多例外是由d和f亚层上的电子对原子核的不良屏蔽效果或者相对论效应导致),[47]并且通常在一族(列)中由上至下递增。因此,大多数金属元素(如铯和钫)位于传统元素周期表的左下角,非金属元素(如氧,氟,氯)则位于右上角。金属性在元素周期表中的水平和垂直趋势组合解释了在一些周期表中发现的金属和非金属之间的阶梯形分界线,以及有时将与该线相邻的几个元素和与这些元素相邻的元素分类为类金属的做法。[48][49]
桥接元素族的特点
编辑
氫(非金屬)
氦(惰性氣體)
鋰(鹼金屬)
鈹(鹼土金屬)
硼(類金屬)
碳(非金屬)
氮(非金屬)
氧(非金屬)
氟(鹵素)
氖(惰性氣體)
鈉(鹼金屬)
鎂(鹼土金屬)
鋁(貧金屬)
矽(類金屬)
磷(非金屬)
硫(非金屬)
氯(鹵素)
氬(惰性氣體)
鉀(鹼金屬)
鈣(鹼土金屬)
鈧(過渡金屬)
鈦(過渡金屬)
釩(過渡金屬)
鉻(過渡金屬)
錳(過渡金屬)
鐵(過渡金屬)
鈷(過渡金屬)
鎳(過渡金屬)
銅(過渡金屬)
鋅(過渡金屬)
鎵(貧金屬)
鍺(類金屬)
砷(類金屬)
硒(非金屬)
溴(鹵素)
氪(惰性氣體)
銣(鹼金屬)
鍶(鹼土金屬)
釔(過渡金屬)
鋯(過渡金屬)
鈮(過渡金屬)
鉬(過渡金屬)
鎝(過渡金屬)
釕(過渡金屬)
銠(過渡金屬)
鈀(過渡金屬)
銀(過渡金屬)
鎘(過渡金屬)
銦(貧金屬)
錫(貧金屬)
銻(類金屬)
碲(類金屬)
碘(鹵素)
氙(惰性氣體)
銫(鹼金屬)
鋇(鹼土金屬)
鑭(鑭系元素)
鈰(鑭系元素)
鐠(鑭系元素)
釹(鑭系元素)
鉕(鑭系元素)
釤(鑭系元素)
銪(鑭系元素)
釓(鑭系元素)
鋱(鑭系元素)
鏑(鑭系元素)
鈥(鑭系元素)
鉺(鑭系元素)
銩(鑭系元素)
鐿(鑭系元素)
鎦(鑭系元素)
鉿(過渡金屬)
鉭(過渡金屬)
鎢(過渡金屬)
錸(過渡金屬)
鋨(過渡金屬)
銥(過渡金屬)
鉑(過渡金屬)
金(過渡金屬)
汞(過渡金屬)
鉈(貧金屬)
鉛(貧金屬)
鉍(貧金屬)
釙(貧金屬)
砈(類金屬)
氡(惰性氣體)
鍅(鹼金屬)
鐳(鹼土金屬)
錒(錒系元素)
釷(錒系元素)
鏷(錒系元素)
鈾(錒系元素)
錼(錒系元素)
鈽(錒系元素)
鋂(錒系元素)
鋦(錒系元素)
鉳(錒系元素)
鉲(錒系元素)
鑀(錒系元素)
鐨(錒系元素)
鍆(錒系元素)
鍩(錒系元素)
鐒(錒系元素)
鑪(過渡金屬)
𨧀(過渡金屬)
𨭎(過渡金屬)
𨨏(過渡金屬)
𨭆(過渡金屬)
䥑(預測為過渡金屬)
鐽(預測為過渡金屬)
錀(預測為過渡金屬)
鎶(過渡金屬)
鉨(預測為貧金屬)
鈇(貧金屬)
鏌(預測為貧金屬)
鉝(預測為貧金屬)
鿬(預測為鹵素)
鿫(預測為惰性氣體)
元素周期表从左到右的黑框表示出出了第3族、镥和铹、第11-12族以及稀有气体
桥接元素位于区与区之间。[50]这些族的元素,比如非金属,具有临近族元素的混合特征。从化学性质上看,第3族元素、钪、钇、镧、锕都表现出了类似碱土金属[51](也即s区金属[52][53])的性质,但同时也具有d区过渡金属的物理性质。[54]位于f区末尾的镥在化学性质上的表现接近于镧,但在物理性质上综合了镧与过渡金属的特点。[55][56]作为镥类似物的铹也可能会有类似的表现。[g]第11族里的造币金属(铜、银和金)在化学性质上的表现能等同于过渡金属或主族金属。[59]第12族里的不定性金属,如锌、镉、汞等有时被看作是d区到p区元素的桥接,它们表面上是d区元素,但几乎不具有过渡金属性质,而是更接近于相邻第13族的p区元素。[60][61]第18族的惰性稀有气体桥接着最活泼的第17族卤素元素与第1族的强碱金属。[50]
周期性的进一步表现
编辑
在整个周期表中,不属于同一族的元素之间还有一些其它关系,例如对角相邻的元素(例如锂和镁)之间的对角线关系。[62]当元素具有相同的价电子数时,在主族和过渡金属之间,或早期锕系元素和早期过渡金属之间也可以发现一些相似之处。因此铀有点类似于6族元素中的铬和钨,[62]因为它们都有6个价电子。[63]
每个区块的第一行往往表现出与其他行截然不同的属性,因为每个区块的第一个轨道(1s、2p、3d、4f、5g等)都比预期的要小得多。[64] 这种异常在s区块中最强,在p区块中中等,在d区块和f区块中不明显。[62]除了s区块以外,其它区块的周期之间也存在奇偶差异,有时称为次级周期性:偶数周期的元素具有较小的原子半径并且更倾向于失去较少的电子,而奇数周期的元素(第一周期除外)则相反。因此,很多p区块的性质是锯齿状的,而不是平滑的一条线。举个例子,氮族元素中,奇数周期的磷和锑准备达到+5氧化态,而偶数周期的氮、砷和铋则留在+3态。[62][65]
狭义相对论导致室温下的汞为液态
当原子核变得高度带电时,就需要狭义相对论来衡量原子核对电子云的影响。这些相对论效应导致重元素与其在元素周期表中的较轻同系物相比性质越来越不同。例如,相对论效应解释了为什么金是金色的,而汞在常温下是液体。[66][67]预计这些影响将在第七期后期变得非常强烈,可能导致元素周期性的崩溃。[68]已知电子构型和化学性质的元素只到元素108(𨭆),因此最重元素的化学特性仍然是当前研究的主题。[69]
元素的许多其他物理性质也会按照周期律表现出周期性变化,如熔点、沸点、熔化热、汽化热、原子化能(英语:Atomisation energy)等。化合物也会出现类似的周期性变化,这可以通过比较氢化物、氧化物、硫化物、卤化物等来观察。[40]化学性质更难以定量描述,但同样表现出其自身的周期性。例子元素及其化合物的酸性和碱性的变化,化合物的稳定性和分离元素的方法。[35]周期性已非常广泛地用于预测未知的新元素和新化合物的性质,并且是现代化学的核心。[70]